N-acetyl cysteine targets nuclear envelope-derived, toxic lipids to improve outcomes following hemorrhagic stroke in mice

Ratan Lab
Burke/Cornell Medical Research Institute
White Plains, NY

WICH 2017
N-acetyl cysteine

- FDA labeled indication
 - Acetaminophen overdose
RESEARCH ARTICLE

N-Acetyl Cysteine May Support Dopamine Neurons in Parkinson's Disease: Preliminary Clinical and Cell Line Data

Daniel A. Monti¹, George Zabrecky¹, Daniel Kremens², Tsao-Wei Liang², Nancy A. Wintering¹, Jingli Cai³, Xiantao Wei³, Anthony J. Bazzan¹, Li Zhong¹, Brendan Bowen¹, Charles M. Intenzo⁴, Lorraine Iacovitti³, Andrew B. Newberg¹,³*

¹ Myrna Brind Center of Integrative Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America, ² Movement Disorders Center, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States of America, ³ Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States of America, ⁴ Division of Nuclear Medicine, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States of America

* Andrew.newberg@jefferson.edu
NAC to mediate its beneficial effects in CNS in preclinical models are variable.

- Lack of understanding of its efficacy in clinically relevant models
- Molecular target of action in mediating these salutary effects
Objective

- To examine the efficacy and mechanism of action of NAC in a mouse model of hemorrhagic stroke.
N-acetyl cysteine protects in in vitro and in vivo models of hemorrhagic stroke.
N-acetyl cysteine protection is independent of bulk iron chelation
N-acetyl cysteine prevents hemin induced death by neutralizing toxic lipids generated via 5-LOX
N-acetyl cysteine alters protein modified by oxidized lipid species
N-acetyl cysteine synergizes with protective prostaglandin, PGE2
Brain hemorrhage

Arachidonic acid

- PLA\(_2\)
- Hemin

Cyclooxygenase pathway
- Prostaglandins
 - PGE\(_2\)
 - Pro-survival

Lipoxygenase pathway
- Leukotrienes
 - LTB\(_4\)
 - Pro-death

5-LOX
- Reactive lipid species
 - ATF4
 - Chac1
 - Degradation of GSH
 - Cell death

N-acetyl cysteine

- FLAP
- Hemin
Acknowledgements

- Rajiv Ratan
- Lauren Alin
- Yingxin Chen
- David Brand
- Megan Bourassa (Burke/Cornell Medical Research)
- Ginger Milne (Vanderbilt University)
- Victor Darley-Usmar (University of Alabama)
- John Pinto (NYMC)

Support: The Burke Foundation, Sperling Center for Hemorrhagic Stroke Recovery at the Burke Medical Research Institute.